Controlled generation of hard and easy Bayesian networks: Impact on maximal clique size in tree clustering

نویسندگان

  • Ole J. Mengshoel
  • David C. Wilkins
  • Dan Roth
چکیده

This article presents and analyzes algorithms that systematically generate random Bayesian networks of varying difficulty levels, with respect to inference using tree clustering. The results are relevant to research on efficient Bayesian network inference, such as computing a most probable explanation or belief updating, since they allow controlled experimentation to determine the impact of improvements to inference algorithms. The results are also relevant to research on machine learning of Bayesian networks, since they support controlled generation of a large number of data sets at a given difficulty level. Our generation algorithms, called BPART and MPART, support controlled but random construction of bipartite and multipartite Bayesian networks. The Bayesian network parameters that we vary are the total number of nodes, degree of connectivity, the ratio of the number of non-root nodes to the number of root nodes, regularity of the underlying graph, and characteristics of the conditional probability tables. The main dependent parameter is the size of the maximal clique as generated by tree clustering. This article presents extensive empirical analysis using the HUGIN tree clustering approach as well as theoretical analysis related to the random generation of Bayesian networks using BPART and MPART. © 2006 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macroscopic Models of Clique Tree Growth for Bayesian Networks

In clique tree clustering, inference consists of propagation in a clique tree compiled from a Bayesian network. In this paper, we develop an analytical approach to characterizing clique tree growth as a function of increasing Bayesian network connectedness, speci cally: (i) the expected number of moral edges in their moral graphs or (ii) the ratio of the number of non-root nodes to the number o...

متن کامل

Understanding the scalability of Bayesian network inference using clique tree growth curves

Bayesian networks (BNs) are used to represent and efficiently compute with multi-variate probability distributions in a wide range of disciplines. One of the main approaches to perform computation in BNs is clique tree clustering and propagation. In this approach, BN computation consists of propagation in a clique tree compiled from a Bayesian network. There is a lack of understanding of how cl...

متن کامل

Designing Resource-Bounded Reasoners using Bayesian Networks: System Health Monitoring and Diagnosis

In this work we are concerned with the conceptual design of large-scale diagnostic and health management systems that use Bayesian networks. While they are potentially powerful, improperly designed Bayesian networks can result in too high memory requirements or too long inference times, to they point where they may not be acceptable for real-time diagnosis and health management in resource-boun...

متن کامل

Distribution of maximal clique size of the vertices for theoretical small-world networks and real-world networks

Our primary objective in this paper is to study the distribution of the maximal clique size of the vertices in complex networks. We define the maximal clique size for a vertex as the maximum size of the clique that the vertex is part of and such a clique need not be the maximum size clique for the entire network. We determine the maximal clique size of the vertices using a modified version of a...

متن کامل

Correlation Analysis between Maximal Clique Size and Centrality Metrics for Random Networks and Scale-Free Networks

The high-level contribution of this paper is a comprehensive analysis of the correlation levels between node centrality (a computationally light-weight metric) and maximal clique size (a computationally hard metric) in random network and scale-free network graphs generated respectively from the well-known Erdos-Renyi (ER) and Barabasi-Albert (BA) models. We use three well-known measures for eva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artif. Intell.

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2006